
ANT: Software for Generating and Evaluating Degenerate Codons for
Natural and Expanded Genetic Codes
Martin K. M. Engqvist and Jens Nielsen*

Department of Chemical & Biological Engineering, Chalmers University of Technology, Kemivag̈en 10, SE-412 96 Göteborg, Sweden

*S Supporting Information

ABSTRACT: The Ambiguous Nucleotide Tool (ANT) is a desktop
application that generates and evaluates degenerate codons. Degenerate
codons are used to represent DNA positions that have multiple possible
nucleotide alternatives. This is useful for protein engineering and directed
evolution, where primers specified with degenerate codons are used as a
basis for generating libraries of protein sequences. ANT is intuitive and can
be used in a graphical user interface or by interacting with the code through
a defined application programming interface. ANT comes with full support
for nonstandard, user-defined, or expanded genetic codes (translation
tables), which is important because synthetic biology is being applied to an
ever widening range of natural and engineered organisms. The Python
source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software
or custom data pipelines.

KEYWORDS: software, synthetic biology, protein engineering, ambiguous nucleotide, degenerate codon, mutagenesis

For protein engineering and directed evolution, it is
common to generate focused libraries of protein sequences

that contain all 20 canonical amino acids, or a subset thereof, at
specific positions. Such libraries are typically generated by
performing PCR using DNA primers with one or more codons
containing nucleotide mixes (degenerate codons). Degenerate
codons are specified using the International Union of Pure and
Applied Chemistry (IUPAC)-standardized ambiguous nucleo-
tide alphabet (Supporting Information Table S1).1 For
example, the degenerate codon NNK (N = T/C/A/G; K =
T/G) can be used to generate a library of sequences encoding
all 20 canonical amino acids. Using the NNK degenerate codon
introduces bias since it specifies 32 real codons while there are
only 20 amino acids.2 This bias can be removed by specifying a
subset of real codons using combinations of degenerate codons
such as the NDT + VHG + TGG codon combination3 or the
NDT + VMA + ATG + TGG combination.4 The former
reduces the number of amino acid duplications to two, and the
latter, to zero.3,4 Using such strategies to reduce redundancy is
important, as the number of unique DNA sequences grows
exponentially with the number of targeted sites and their
respective degeneracy. Even with reduced redundancy, the
number of clones that needs to be screened can be hard to
manage. For example, for a library generated with the NDT +
VMA + ATG + TGG codon combination at four sites, a total of
479.312 clones must be screened to reach 95% statistical library
coverage.5 To reduce the number of clones that need to be
screened, one may use various structure- or sequence-based
bioinformatic approaches to identify amino acid subsets to
test.6,7 Alternatively, one may use predefined degenerate
codons that specify amino acid subsets with certain properties.

For example, these can include amino acids that are hydrophilic
(codon: VRK), hydrophobic (codon: NYC), small (codon:
KST), charged (codon: RRK), or balanced in their sampling of
properties (codon: NDT).8,9 However, finding which degen-
erate codon to use for an ad hoc selection of amino acids is not
trivial. Conversely, manually validating that a given degenerate
codon actually encodes the specified amino acids is very time-
consuming and error-prone. Tools such as DC-analyzer, MDC-
analyzer, LibDesign, AA-Calculator, and GLUE-IT have been
developed to assist in these processes.4,5,8,10 While these tools
are useful, they come with caveats that limit their generality.
First, they do not let the user specify the genetic code used for
computation. This is a limitation, as synthetic biology is
increasingly applied also to organisms that do not use the
standard genetic code. Second, the tools cannot handle
expanded genetic codes, such as those where the UAG stop
codon or the AUA isoleucine codon have been reassigned to
encode unnatural amino acids (UAA).11−15 The ability to
design protein libraries making use of UAA is important, as
their functional contribution can confer selective advantages.16

Lastly, the existing tools cannot be incorporated into custom
bioinformatic pipelines due to the code being unavailable or
closed source. The synthetic biology and protein engineering
communities would therefore benefit from an intuitive software
tool for computing and evaluating degenerate codons without
these limitations.

Special Issue: IWBDA 2014

Received: February 2, 2015
Published: April 22, 2015

Technical Note

pubs.acs.org/synthbio

© 2015 American Chemical Society 935 DOI: 10.1021/acssynbio.5b00018
ACS Synth. Biol. 2015, 4, 935−938

pubs.acs.org/synthbio
http://dx.doi.org/10.1021/acssynbio.5b00018


■ THE ANT APPLICATION
Here, we present the Ambiguous Nucleotide Tool (ANT), a
flexible, user-friendly software tool with full support for all
known genetic codes, user-defined genetic codes, and expanded
genetic codes. The software runs locally on the user’s computer,
can compute degenerate codons for a user-defined set of amino
acids, and can also evaluate which amino acids are encoded by a
specific degenerate codon. For each amino acid selection, the
degenerate codon with the fewest off-target amino acids and
least codon redundancy is presented to the user. The software
also provides a look-ahead function that highlights amino acids
that may be chosen without introducing further off-target
amino acids. Alternative degenerate codons can also easily be
retrieved by the user. ANT is free and open source, released
under the GNU General Public License, v3.0 (GPL3), such that
researchers may freely study, modify, and redistribute the code.
The Python source code is available at https://github.com/
mengqvist/ANT.

■ HOW DOES ANT WORK?
ANT is a desktop application that allows the user to determine
the degenerate codons for a given set of amino acids as well as
to evaluate which amino acids a degenerate codon specifies.
This can be done either using a Python-based command line
application programming interface (API), allowing for incor-
poration in data pipelines, or through a point-and-click
graphical user interface (GUI), allowing users with no

programming experience to use the software. A user-defined
genetic code that uses the UAG codon for nonstandard amino
acids is provided as an example of ANT’s support for expanded
genetic codes.11−14

Parameters. In ANT, there are three parameters that may
be specified: (I) the genetic code (translation table) that should
be used for the computation, (II) a set of amino acids for which
a degenerate codon should be computed, (III) a degenerate
codon for which the encoded amino acids should be found. To
compute a degenerate codon, parameters I and II need to be
set. To evaluate a degenerate codon, parameters I and III need
to be set. In addition to these parameters, a settings file is
provided in which codons can be excluded from the
computation and a user-specified codon table can be easily
edited.

Working with the GUI. There are two alternate layouts for
the GUI. One shows the amino acids at the periphery of a
codon wheel (Figure 1), and the other indicates the
physiochemical properties of each amino acid by displaying
them in a series of Venn diagrams17 (Figure S1). When
working with the GUI, the genetic code appropriate for the
target organism is first chosen (Figure 1, label 1). A list of
genetic codes can be found at NCBI (http://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi) and in Supporting Infor-
mation Table S2. The user may then either start selecting
amino acids by clicking on the codon wheel (Figure 1, label 2)
or by specifying a degenerate codon to evaluate (Figure 1, label

Figure 1. Overview of the ANT GUI. The different features of the GUI are indicated with magenta labels. (1) A dropdown menu for choosing the
genetic code. (2) A codon circle for visualizing the amino acid selection as well as for choosing desired amino acids. (3) A text field in which a
degenerate codon may be entered for evaluation. (4) The current degenerate codon is displayed in large letters, and the nucleotides specified are
shown in small letters. (5) A bar graph of the codon count for each encoded amino acid. (6) Button for copying a complete report to the clipboard.
(7) A checkbox that allows the user to switch between the codon wheel visualization (shown here) and the amino acid properties visualization (see
Figure S1).

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.5b00018
ACS Synth. Biol. 2015, 4, 935−938

936

https://github.com/mengqvist/ANT
https://github.com/mengqvist/ANT
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://dx.doi.org/10.1021/acssynbio.5b00018


3). If specifying amino acids using the codon wheel, then the
chosen amino acids are highlighted in green, amino acids that
may still be chosen without further off-target amino acids are
highlighted in yellow, and off-target amino acids are highlighted
in red (Figure 1, label 2). If evaluating a codon, then the
encoded amino acids are highlighted on the codon wheel in
green and amino acids that may be chosen without further off-
targets are highlighted in yellow. The genetic code can be
changed at any time with an active amino acid selection. The
degenerate codon representing the current amino acid selection
is shown in large lettering, whereas the real nucleotides defined
by the degenerate codon are shown in small lettering (Figure 1,
label 4). The number of times each amino acid is encoded
(chosen and off-target) is displayed in their respective colors in
a bar graph (Figure 1, label 5). A full result report can be copied
to the system clipboard (Figure 1, label 6). In addition to
providing the degenerate codon, the exported information lists
the chosen amino acids, off-target amino acids, amino acids that
may be chosen without further off-target amino acids, the real
codons defined by the degenerate codon, the genetic code used
for the computation, the library size and number of clones
needed to screen to reach 95% library coverage, and a list of
alternate degenerate codons. The percentage library coverage
returned in this report can be changed by modifying the
settings file. ANT thus enables the user to very easily generate a
wealth of useful information in a simple point-and-click GUI.
The GUI requires a working installation of Python (https://
www.python.org/) as well as wxPython (http://www.
wxpython.org/).
Working with the API. For incorporation into data

pipelines, ANT may also be used in a Python interpreter or
imported in a Python script. A codon object is first generated
by specifying amino acids and a genetic code or by specifying a
degenerate codon and a genetic code (Table 1, numbers 1 and

2). Attributes of that object can then be easily retrieved and
contain the same information that can be accessed through the
GUI (Table 1, numbers 3−10). Finally, a complete report can
be retrieved (Table 1, number 11). The API requires only a
working installation of Python.

Algorithm for Generating a Degenerate Codon. When
the user specifies a set of amino acids for which the degenerate
codon should be found, the algorithm works as follows: Using
the specified genetic code, all codons for each of those amino
acids are retrieved. If any undesirable codons have been
specified in the settings file, then they are removed from the list
and thereby excluded from the computation. Separately, for
positions 1, 2, and 3 of these codons, all ambiguous nucleotides
that match at least one nucleotide for each amino acid are
found. Every combination of the ambiguous nucleotides for
codon positions 1, 2, and 3 is then made and represents a set of
possible degenerate codons. Each degenerate codon is scored
by converting back to real codons, translating to amino acids,
and checking against the user-defined amino acid selection. The
scoring function retains the degenerate codons with the fewest
off-target amino acids (encoded amino acids that were not
chosen by the user). This may be one or several codons, but
they all represent the minimum number of off-target amino
acids. However, these may differ in their redundancy. The
scoring function therefore goes through them and selects the
one that encodes the fewest number of real codons, to decrease
redundancy. The resulting codon is presented to the user. To
compute which other amino acids may be chosen without
adding more off-target amino acids, a look-forward function is
used. The look-forward function takes the current amino acid
selection, goes through all of the unchosen amino acids one-by-
one, and evaluates whether these lead to new off-target amino
acids or not. The entire computation is finished in less than 1 s
on an average laptop computer.

Table 1. Specification of the ANT API

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.5b00018
ACS Synth. Biol. 2015, 4, 935−938

937

https://www.python.org/
https://www.python.org/
http://www.wxpython.org/
http://www.wxpython.org/
http://dx.doi.org/10.1021/acssynbio.5b00018


Algorithm for Evaluating a Codon. To evaluate a
degenerate codon, the first, second, and third degenerate
nucleotides are converted to their actual nucleotide counter-
parts. Every combination of these is then made while
maintaining the position of each nucleotide. The resulting
codons are translated to amino acids using the specified genetic
code.

■ ASSOCIATED CONTENT
*S Supporting Information
Table S1: List of ambiguous nucleotides and the actual
nucleotides that they specify. Table S2: List of genetic code
numbers and names. Figure S1: Overview of the ANT GUI.
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.5b00018.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: nielsenj@chalmers.se.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by FORMAS and Vetenskapsrad̊et.
We would like to thank Francesco Gatto for critical review of
this manuscript.

■ REFERENCES
(1) Cornish-Bowden, A. (1985) Nomenclature for incompletely
specified bases in nucleic acid sequences: Recommendations 1984.
Nucleic Acids Res. 13, 3021−30.
(2) Scott, J. K., and Smith, G. P. (1990) Searching for peptide ligands
with an epitope library. Science 249, 386−90.
(3) Kille, S., Acevedo-Rocha, C. G., Parra, L. P., Zhang, Z.-G.,
Opperman, D. J., Reetz, M. T., and Acevedo, J. P. (2012) Reducing
codon redundancy and screening effort of combinatorial protein
libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83−92.
(4) Tang, L., Gao, H., Zhu, X., Wang, X., Zhou, M., and Jiang, R.
(2012) Construction of “small-intelligent” focused mutagenesis
libraries using well-designed combinatorial degenerate primers.
BioTechniques 52, 149−58.
(5) Tang, L., Wang, X., Ru, B., Sun, H., Huang, J., and Gao, H.
(2014) MDC-Analyzer: a novel degenerate primer design tool for the
construction of intelligent mutagenesis libraries with contiguous sites.
BioTechniques 56, 301−2.
(6) Jochens, H., and Bornscheuer, U. T. (2010) Natural diversity to
guide focused directed evolution. ChemBioChem 11, 1861−6.
(7) Reetz, M. T., and Wu, S. (2008) Greatly reduced amino acid
alphabets in directed evolution: making the right choice for saturation
mutagenesis at homologous enzyme positions. Chem. Commun. 43,
5499−501.
(8) Mena, M. A., and Daugherty, P. S. (2005) Automated design of
degenerate codon libraries. Protein Eng., Des. Sel. 18, 559−61.
(9) Balint, R. F., and Larrick, J. W. (1993) Antibody engineering by
parsimonious mutagenesis. Gene 137, 109−18.
(10) Firth, A. E., and Patrick, W. M. (2008) GLUE-IT and PEDEL-
AA: new programmes for analyzing protein diversity in randomized
libraries. Nucleic Acids Res. 36, W281−5.
(11) Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R.,
Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P.
A., Mosberg, J. A., Rohland, N., Schultz, P. G., Jacobson, J. M.,
Rinehart, J., Church, G. M., and Isaacs, F. J. (2013) Genomically
recoded organisms expand biological functions. Science 342, 357−60.
(12) Johnson, D. B. F., Xu, J., Shen, Z., Takimoto, J. K., Schultz, M.
D., Schmitz, R. J., Xiang, Z., Ecker, J. R., Briggs, S. P., and Wang, L.

(2011) RF1 knockout allows ribosomal incorporation of unnatural
amino acids at multiple sites. Nat. Chem. Biol. 7, 779−86.
(13) Isaacs, F. J., Carr, P. A., Wang, H. H., Lajoie, M. J., Sterling, B.,
Kraal, L., Tolonen, A. C., Gianoulis, T. A., Goodman, D. B., Reppas, N.
B., Emig, C. J., Bang, D., Hwang, S. J., Jewett, M. C., Jacobson, J. M.,
and Church, G. M. (2011) Precise manipulation of chromosomes in
vivo enables genome-wide codon replacement. Science 333, 348−53.
(14) Mukai, T., Hayashi, A., Iraha, F., Sato, A., Ohtake, K., Yokoyama,
S., and Sakamoto, K. (2010) Codon reassignment in the Escherichia
coli genetic code. Nucleic Acids Res. 38, 8188−95.
(15) Bohlke, N., and Budisa, N. (2014) Sense codon emancipation
for proteome-wide incorporation of noncanonical amino acids: rare
isoleucine codon AUA as a target for genetic code expansion. FEMS
Microbiol. Lett. 351, 133−44.
(16) Liu, C. C., Mack, A. V., Tsao, M.-L., Mills, J. H., Lee, H. S.,
Choe, H., Farzan, M., Schultz, P. G., and Smider, V. V. (2008) Protein
evolution with an expanded genetic code. Proc. Natl. Acad. Sci. U.S.A.
105, 17688−93.
(17) Taylor, W. R. (1986) The classification of amino acid
conservation. J. Theor. Biol. 119, 205−218.

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.5b00018
ACS Synth. Biol. 2015, 4, 935−938

938

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.5b00018
mailto:nielsenj@chalmers.se
http://dx.doi.org/10.1021/acssynbio.5b00018

